CSS

本项目主要开发设计了基于yolov11+SE的垃圾分类系统,本系统集成yolo模型以及引入se注意力机制,开发了一款app,界面简约,功能完善。可以用来学习如何调用yolo模型!以下是摘要介绍: 在当今这个城市化快速发展的时代,城市里的生活垃圾产量一直在持续不断地攀升,传统的人工进行垃圾分类的方式,它的效率特别低下,而且分类的准确性也不怎么高,很难契合现在资源循环利用以及环境保护方面的需求。本系统专门设计并且实现了一个基于深度学习的生活垃圾分类目标检测系统,这个系统借助了比较先进的图像识别技术,能够实现垃圾的自动化精准分类。凭借这样的分类方式,就可以提高垃圾分类的效率,还可以降低对环境的污染,促进资源的循环利用,在系统开发的过程当中,凭借多种不同的渠道去收集数据,把公开的数据集进行整合,收集到的数据经由去噪、标准化以及数据提高等一系列的预处理操作之后,按照7:2:1的比例划分成训练集、验证集和测试集,系统选用了YOLOv11模型,并且结合SE注意力机制来进行特征提取和模型训练,还利用Pytorch库对特征选择进行优化。在系统架构方面,前端是基于Vue.js框架来构建交互界面的,后端运用Flask框架来处理业务逻辑,搭配MySQL数据库来管理数据,这样就能实现实时检测、结果统计展示以及用户交互等功能,经由测试可以得出,这个系统对四类垃圾的分类精确度能够达到88%以上,就算是在复杂的环境之下,它仍然可以保持比较高的检测稳定性,有效地推动了垃圾分类智能化的发展,有很不错的应用前景。
2220PythonAPP
基于深度学习的Web云端皮肤疾病识别工程是一个具有重要意义的项目,以下是关于该工程的一些信息: ### 技术实现 - **深度学习模型**:通常使用卷积神经网络(CNN)作为核心模型,如ResNet、DenseNet、Inception等。这些模型能够自动学习皮肤图像中的特征,从而实现对皮肤疾病的分类和识别。 - **数据处理**:需要对大量的皮肤图像数据进行收集、标注和预处理。预处理可能包括图像裁剪、归一化、增强等操作,以提高模型的鲁棒性和准确性。 - **Web云端架构**:利用云计算平台的强大计算能力,将深度学习模型部署在云端。用户可以通过Web界面上传皮肤图像,云端服务器接收图像后,调用深度学习模型进行识别,并将结果返回给用户。 ### 优势与特点 - **高效便捷**:用户无需安装复杂的软件或具备专业的技术知识,只需通过Web界面上传图像即可快速获得诊断结果。 - **准确性高**:深度学习模型在大规模数据上进行训练,能够学习到丰富的特征,从而提高皮肤疾病识别的准确性。 - **可扩展性强**:云端架构使得系统能够方便地进行扩展,以应对更多的用户请求和更复杂的模型。 ### 应用场景 - **医疗辅助诊断**:帮助医生快速筛选和初步诊断皮肤疾病,提高诊断效率。 - **远程医疗**:为偏远地区或医疗资源不足的地区提供远程诊断服务。 - **个人健康管理**:用户可以自行上传皮肤图像,及时了解自己的皮肤健康状况。
870Pythonpython1000.00元
西红柿品种识别源文件源码
基于YOLO V5的西红柿品种检测平台是一个高效、用户友好的软件,它能够快速上传和处理图像,准确识别西红柿的不同品种,并通过直观的界面展示识别结果。平台支持批量处理和数据导出,同时平台具有百科全书,通过各种方法来向用户展示西红柿的各种科普知识、前世今生、品种分布、销售统计,此外,它还具备易于集成的API接口和全面的客户支持服务。 采用先进的YOLO V5深度学习模型,该模型以其快速、准确的目标检测能力而闻名,特别适合于图像识别任务。通过训练和优化模型,实现了对西红柿品种的高准确率识别,减少了误判和漏判的可能性。
1100html5机器学习/深度学习
元创智能AI源文件源码
本项目面向学生,使用相关AI技术完成对学生的考试评估,以及与AI智能对话 提供智能绘图 帮助学生定位自己薄弱知识点,也能够出相关题目,帮助巩固自己薄弱的知识点.还有视频课拱学生学习. 还具备先进的拍照解题功能,只需上传题目照片,便可得到答案.
1440html5机器学习/深度学习10000.00元
数据分析及预测源文件源码
1、本项目通过已有的历史数据,对未来的数据进行分析和预测 2、本项目使用的项目栈:python、pandas、flask、机器学习、神经网络结合前端bootstrap框架 3、本项目基于机器学习和神经网络的知识,对历史数据先进行分类训练,提取训练模型后进行数据预测,并最终生成excel文件
1440pythonPython开发工具3000.00元
使用神经网络(LSTM)对样本存取频率进行预测,预测出未来哪些样本的存取频率高,并将其存放在离机械臂近的地方。 算法:长短期记忆网络(LSTM) 使用Pyside2来开发界面,使用Python语言编写 采用mysql数据库
1170python机器学习/深度学习
主要功能:实时检测海域内浒苔的滋生位置,漂流情况,刷新在网页系统界面。智能预测浒苔漂流方向,智能规划打捞方案,浒苔近岸时自动预警。 实现方式:通过卫星云图获取浒苔位置,显示在页面,深度学习算法做数据分析实现智能预警,智能规划打捞路线,显示附近渔船打捞船信息
4640c#css
网页是构成网站的基本元素,通常是HTML格式的文件,需要通过浏览器来阅读。一个网页主要由结构、表现和行为三部分组成。结构部分由HTML语言来定义,它描述了网页的内容和语义。HTML文件包含了网页的头部信息和主体内容,头部信息中包含了网页的标题、编码、引入的静态资源等,而主体部分则包含了几乎所有的网页内容,如文本、图片、链接等。 表现部分则使用CSS(层叠样式表)来控制页面中元素的样式,对结构进行美化。CSS可以定义元素的布局、颜色、字体等属性,使得网页在视觉上更加美观和易于阅读。 行为部分则涉及到网页的交互性和动态性,通常通过JavaScript等脚本语言来实现。JavaScript可以响应用户的操作,如点击按钮、填写表单等,并动态地修改网页内容或发起网络请求。 除了这些基本的组成部分,网页还可以包含其他多媒体元素,如音频、视频等,以丰富网页的内容和用户体验。同时,随着技术的发展,现代网页也更加注重响应式设计和可访问性,以适应不同设备和用户的需求。 总之,网页是互联网上信息展示和交流的重要载体,通过HTML、CSS和JavaScript等技术的综合运用,可以实现丰富多彩、交互性强的网页效果。
1540html5机器学习/深度学习
python angular redis mysql nginx linux 作品分类(1-5个分类)(必填): 机器学习/深度学习 脚本编程语言 网络爬虫 日志分析和统计 项目构建 添加标签,按回车确认 HTML5开发相关文件管理器其他jQuery插件Chrome插件/扩展论坛系统BBS作业/任务调度网络爬虫日志分析和统计图形和图像工具Emoji 表情相关终端/远程登录搜索引擎项目构建REST/RESTful项目嵌入式操作系统
4050python机器学习/深度学习
当前共9个项目more
×
寻找源码
源码描述
联系方式
提交