Python

Python是一门诞生于1991年的高级、解释型编程语言,由吉多·范罗苏姆创造。其核心设计哲学强调代码的极简性和可读性,尤其依赖清晰的缩进来定义代码结构,这使得它语法接近英语,非常易于学习和使用。作为动态类型语言,它为快速开发和原型设计提供了极大的灵活性,并支持面向对象、命令式、函数式等多种编程范式。Python的巨大优势在于其拥有一个由庞大活跃社区支撑的丰富第三方库生态系统(PyPI),覆盖了几乎所有应用领域:无论是Web开发(Django, Flask)、数据科学(Pandas, NumPy, Matplotlib)、人工智能(TensorFlow, PyTorch)还是自动化脚本和系统运维,都能找到成熟高效的工具库。这种“开箱即用”的特性使其成为解决各类实际问题的“瑞士军刀”,兼具强大的功能与简单的语法。
Python语言框架
Python是一门诞生于1991年的高级、解释型编程语言,由吉多·范罗苏姆创造。其核心设计哲学强调代码的极简性和可读性,尤其依赖清晰的缩进来定义代码结构,这使得它语法接近英语,非常易于学习和使用。作为动态类型语言,它为快速开发和原型设计提供了极大的灵活性,并支持面向对象、命令式、函数式等多种编程范式。Python的巨大优势在于其拥有一个由庞大活跃社区支撑的丰富第三方库生态系统(PyPI),覆盖了几乎所有应用领域:无论是Web开发(Django, Flask)、数据科学(Pandas, NumPy, Matplotlib)、人工智能(TensorFlow, PyTorch)还是自动化脚本和系统运维,都能找到成熟高效的工具库。这种“开箱即用”的特性使其成为解决各类实际问题的“瑞士军刀”,兼具强大的功能与简单的语法。
开发组织  吉多·范罗苏姆
项目实现了完整的AlphaZero训练与推理流程,包括自我博弈数据生成、基于MCTS的策略改进、策略-价值联合网络训练以及模型评估对弈。支持多种棋类环境扩展(如井字棋、Connect4),结构清晰,模块解耦,便于替换网络结构或搜索策略,用于强化学习与博弈算法的研究与实验。
220Python人工智能
核心算法:采用最新的YOLOv11算法,兼顾检测速度与精度。一站式流程:集成环境检测、数据集配置、模型训练、结果可视化等全流程功能。多模态检测:支持图片文件、视频文件以及实时摄像头画面的目标检测。可视化交互:通过直观的GUI界面展示检测结果(边界框、置信度、类别),并支持训练过程中的参数配置与日志监
210C++人工智能
核心功能模块包括数据处理模块、知识检索模块、模型训练模块、预测与评估模块、支撑功能模块。主要功能描述:数据处理模块支持Excel/CSV与JSONL格式自动转换,完成数据清洗、无效样本过滤及按题型比例拆分训练/验证集;知识检索模块实现知识库标准化处理、高维向量生成与FAISS索引构建,精准匹配“问题
470Python人工智能
1、项目有哪些具体功能模块:系统包含实时手语检测模块、手势学习模式、数据记录与分析模块、声音反馈系统、手势序列识别模块、用户界面模块和配置管理系统。实时检测模块通过摄像头捕捉手部动作并识别26种标准手势;学习模式提供交互式手势教学;数据记录模块保存识别历史用于分析;声音反馈提供实时提示;序列识别能检
1390Python人工智能
开放域视觉定位:支持通过自然语言指令,在图像中定位任意指定的物体、人物或场景元素。思维链增强推理:利用大模型的内在推理能力,通过多步思考提升复杂场景下的定位准确性。参数高效微调:采用LoRA技术对Qwen2.5-VL-7B模型进行微调,仅训练少量参数即可显著提升在目标领域的效果。完整训练流水线:实现
3120Python人工智能
项目特色:1.自适应检索策略:根据本地文档数量自动选择本地检索或Elasticsearch检索,支持运行时强制切换。2.多版本演进:从基础命令行版本延展到多个WebUI版本(简洁版、增强版、图像增强版、ESRAG版本等),满足不同部署和交互需求。3.混合检索与网络补充:优先使用本地知识库,缺失时可通
2210Python人工智能
项目介绍:本项目旨在解决复杂网络中的链路预测问题及增强模型的可解释性,提出了一种结合图神经网络(GNN)和贝叶斯网络的创新框架。通过多层次的图神经网络提取节点的局部和全局结构特征,并结合节点属性信息,利用贝叶斯网络进行概率推理,在SCHOLAT数据集上实现了93%的准确率,在YST数据集上实现了81
1200Python人工智能
1.基础蒸烤功能模块实现蒸、烤、蒸烤组合等核心烹饪功能温度控制(室温至最高温度的精准调节)时间设定与控制多种预设烹饪模式(如烘焙、烤肉、蒸鱼等)安全保护机制(过热保护、超时保护等)2.菜谱功能模块内置多种菜品的菜谱数据库菜谱分类与检索功能分步烹饪指导食材与调料用量建议用户自定义菜谱存储与分享3.摄像
1340Python人工智能
非接触式监测:使用医用级摄像头对保温箱内早产儿进行持续视频采集,避免传感器接触对婴儿造成的刺激深度学习姿态识别:基于改进的YOLOv4/YOLOv5算法,实现对早产儿关键身体部位(头部、四肢、躯干)的精准定位和姿态分类异常行为检测:通过时序分析识别异常姿态模式(如持续性异常体位、活动减少等),及时预
1250C++人工智能
主要对xx平台的视频质量评估项目进行需求拆解、数据处理、业务快速理解,最终给出评判一个视频质量高低的因素。从统计学角度和机器学习角度两方面进行分析和建模,给出了统计学结果和机器学习模型结果,并根据结果进行了效果验证和详细的数据分析,针对从数据模型表现上发现的一些异常点,给出了业务解释和业务指导,整体
1210Python机器深度学习
数据分析作品产品系统
针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。
1110Python电商
该系统支持遥感图像上传与管理、多模型(如RT-DETR、YOLO系列)目标检测任务动态调度、检测结果可视化标注,并集成本地大模型(如DeepSeek-R1、Qwen3.0、Gemma3)对识别结果进行语义理解与专业解读,例如生成地物分类报告、变化检测分析或应急响应建议。同时提供用户权限管理、任务历史
2200Java人工智能
1.自动爬取下载信息,将人工流程的点击,复制粘贴等操作全部通过脚本实现。2.“AI建议”与“AI决策”双模式切换,AI建议模式通过AI预测和人工筛选结果进行模型增量学习。AI决策模式实现全流程自动化,并设计阈值,将模糊AI无法判断的博主保存到人工复审数据库。设计复审功能,人工审核模糊的博主3.设计数
1350Python机器深度学习
本项目是一个面向计算机视觉领域的算法库,聚焦于图像分类任务,旨在为科研开发者提供简洁、可复用的模型实现与实验基础。其主要功能模块包括:核心模型集:提供多种经典卷积神经网络实现,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception系列、DenseNet等,涵盖从
4050Python人工智能
当前共14个项目more
×
寻找源码
源码描述
联系方式
提交